Sentiment analysis on social media such as Twitter provides organizations and individuals an effective way to monitor public emotions towards them and their competitors. As a result, sentiment analysis has become an important and challenging task. In this work, we have collected seven publicly available and manually annotated twitter sentiment datasets. We create a new training and testing dataset from the collected datasets. We develop an LSTM model to classify sentiment of a tweet and evaluate the model with the new dataset.
translated by 谷歌翻译
从随机实验获得的数据培训模型是做出良好决策的理想选择。但是,随机实验通常是耗时的,昂贵的,冒险的,不可行的或不道德的,决策者别无选择,只能依靠培训模型时在历史策略下收集的观察数据。这不仅为实践中的决策政策发挥了最佳作用,还为不同的数据收集协议对数据培训的各种政策的绩效的影响,或者在问题上的稳健性方面的稳健性,对问题的绩效提出了疑问诸如观察结果中的动作或奖励 - 特定延迟之类的特征。我们的目的是为了在LinkedIn优化销售渠道分配的问题回答此类问题,其中销售帐户(线索)需要分配给三个渠道之一,目的是在一段时间内最大程度地提高成功转换的数量。关键问题特征构成了观察分配结果的随机延迟,其分布既是通道和结果依赖性的。我们构建了一个离散的时间模拟,可以处理我们的问题功能并将其用于评估:a)基于历史规则的策略; b)有监督的机器学习政策(XGBOOST); c)多臂强盗(MAB)策略,在涉及的不同情况下:i)用于培训的数据收集(观察性与随机分组); ii)铅转换方案; iii)延迟分布。我们的仿真结果表明,Linucb是一种简单的mAB策略,始终优于其他策略,相对于基于规则的策略,实现了18-47%的提升
translated by 谷歌翻译
预测可帮助企业分配资源并实现目标。在LinkedIn,产品所有者使用预测来设定业务目标,跟踪前景和监视健康。工程师使用预测有效地提供硬件。开发一种预测解决方案来满足这些需求,需要对各种时间序列进行准确,可解释的预测,并以次数至季度的频率。我们提出了Greykite,这是一个用于预测的开源Python库,已在LinkedIn上部署了二十多种用例。它的旗舰算法Silverkite提供了可解释的,快速且高度灵活的单变量预测,可捕获诸如时期增长和季节性,自相关,假期和回归剂等效果。该库通过促进数据探索,模型配置,执行和解释来实现自我服务的准确性和信任。我们的基准结果显示了来自各个域的数据集的现成速度和准确性。在过去的两年中,金融,工程和产品团队的资源计划和分配,目标设置和进度跟踪,异常检测和根本原因分析的资源团队一直信任灰金矿的预测。我们希望灰金矿对具有类似应用的预测从业者有用,这些应用需要准确,可解释的预测,这些预测捕获了与人类活动相关的时间序列共有的复杂动力学。
translated by 谷歌翻译
基于加固学习(RL)的解决方案是在包括机器人,医疗保健和工业自动化的各种领域中采用。当这些解决方案运作良好时,大多数焦点都会给出,但在出于分发输入时,它们会失败。RL策略与大多数机器学习模型共享相同的故障。除了rl的分布检测通常没有很好地覆盖于文献中,并且这项任务缺乏基准。在这项工作中,我们提出了一种基准,通过修改非视标准环境的物理参数或损坏视觉环境的状态观察来评估强化学习设置中的ood检测方法。我们讨论了生成可以产生OOD数据的自定义RL环境的方法,并评估3个不确定性方法进行ood检测任务。我们的结果表明,集合方法具有较低的检测性能,在多种环境中具有较低的标准偏差。
translated by 谷歌翻译
Unsupervised learning-based anomaly detection in latent space has gained importance since discriminating anomalies from normal data becomes difficult in high-dimensional space. Both density estimation and distance-based methods to detect anomalies in latent space have been explored in the past. These methods prove that retaining valuable properties of input data in latent space helps in the better reconstruction of test data. Moreover, real-world sensor data is skewed and non-Gaussian in nature, making mean-based estimators unreliable for skewed data. Again, anomaly detection methods based on reconstruction error rely on Euclidean distance, which does not consider useful correlation information in the feature space and also fails to accurately reconstruct the data when it deviates from the training distribution. In this work, we address the limitations of reconstruction error-based autoencoders and propose a kernelized autoencoder that leverages a robust form of Mahalanobis distance (MD) to measure latent dimension correlation to effectively detect both near and far anomalies. This hybrid loss is aided by the principle of maximizing the mutual information gain between the latent dimension and the high-dimensional prior data space by maximizing the entropy of the latent space while preserving useful correlation information of the original data in the low-dimensional latent space. The multi-objective function has two goals -- it measures correlation information in the latent feature space in the form of robust MD distance and simultaneously tries to preserve useful correlation information from the original data space in the latent space by maximizing mutual information between the prior and latent space.
translated by 谷歌翻译
The Internet of Things (IoT) is a system that connects physical computing devices, sensors, software, and other technologies. Data can be collected, transferred, and exchanged with other devices over the network without requiring human interactions. One challenge the development of IoT faces is the existence of anomaly data in the network. Therefore, research on anomaly detection in the IoT environment has become popular and necessary in recent years. This survey provides an overview to understand the current progress of the different anomaly detection algorithms and how they can be applied in the context of the Internet of Things. In this survey, we categorize the widely used anomaly detection machine learning and deep learning techniques in IoT into three types: clustering-based, classification-based, and deep learning based. For each category, we introduce some state-of-the-art anomaly detection methods and evaluate the advantages and limitations of each technique.
translated by 谷歌翻译
Pneumonia, a respiratory infection brought on by bacteria or viruses, affects a large number of people, especially in developing and impoverished countries where high levels of pollution, unclean living conditions, and overcrowding are frequently observed, along with insufficient medical infrastructure. Pleural effusion, a condition in which fluids fill the lung and complicate breathing, is brought on by pneumonia. Early detection of pneumonia is essential for ensuring curative care and boosting survival rates. The approach most usually used to diagnose pneumonia is chest X-ray imaging. The purpose of this work is to develop a method for the automatic diagnosis of bacterial and viral pneumonia in digital x-ray pictures. This article first presents the authors' technique, and then gives a comprehensive report on recent developments in the field of reliable diagnosis of pneumonia. In this study, here tuned a state-of-the-art deep convolutional neural network to classify plant diseases based on images and tested its performance. Deep learning architecture is compared empirically. VGG19, ResNet with 152v2, Resnext101, Seresnet152, Mobilenettv2, and DenseNet with 201 layers are among the architectures tested. Experiment data consists of two groups, sick and healthy X-ray pictures. To take appropriate action against plant diseases as soon as possible, rapid disease identification models are preferred. DenseNet201 has shown no overfitting or performance degradation in our experiments, and its accuracy tends to increase as the number of epochs increases. Further, DenseNet201 achieves state-of-the-art performance with a significantly a smaller number of parameters and within a reasonable computing time. This architecture outperforms the competition in terms of testing accuracy, scoring 95%. Each architecture was trained using Keras, using Theano as the backend.
translated by 谷歌翻译
Diabetic Retinopathy (DR) is a leading cause of vision loss in the world, and early DR detection is necessary to prevent vision loss and support an appropriate treatment. In this work, we leverage interactive machine learning and introduce a joint learning framework, termed DRG-Net, to effectively learn both disease grading and multi-lesion segmentation. Our DRG-Net consists of two modules: (i) DRG-AI-System to classify DR Grading, localize lesion areas, and provide visual explanations; (ii) DRG-Expert-Interaction to receive feedback from user-expert and improve the DRG-AI-System. To deal with sparse data, we utilize transfer learning mechanisms to extract invariant feature representations by using Wasserstein distance and adversarial learning-based entropy minimization. Besides, we propose a novel attention strategy at both low- and high-level features to automatically select the most significant lesion information and provide explainable properties. In terms of human interaction, we further develop DRG-Net as a tool that enables expert users to correct the system's predictions, which may then be used to update the system as a whole. Moreover, thanks to the attention mechanism and loss functions constraint between lesion features and classification features, our approach can be robust given a certain level of noise in the feedback of users. We have benchmarked DRG-Net on the two largest DR datasets, i.e., IDRID and FGADR, and compared it to various state-of-the-art deep learning networks. In addition to outperforming other SOTA approaches, DRG-Net is effectively updated using user feedback, even in a weakly-supervised manner.
translated by 谷歌翻译
The ability to distinguish between different movie scenes is critical for understanding the storyline of a movie. However, accurately detecting movie scenes is often challenging as it requires the ability to reason over very long movie segments. This is in contrast to most existing video recognition models, which are typically designed for short-range video analysis. This work proposes a State-Space Transformer model that can efficiently capture dependencies in long movie videos for accurate movie scene detection. Our model, dubbed TranS4mer, is built using a novel S4A building block, which combines the strengths of structured state-space sequence (S4) and self-attention (A) layers. Given a sequence of frames divided into movie shots (uninterrupted periods where the camera position does not change), the S4A block first applies self-attention to capture short-range intra-shot dependencies. Afterward, the state-space operation in the S4A block is used to aggregate long-range inter-shot cues. The final TranS4mer model, which can be trained end-to-end, is obtained by stacking the S4A blocks one after the other multiple times. Our proposed TranS4mer outperforms all prior methods in three movie scene detection datasets, including MovieNet, BBC, and OVSD, while also being $2\times$ faster and requiring $3\times$ less GPU memory than standard Transformer models. We will release our code and models.
translated by 谷歌翻译
Several self-supervised representation learning methods have been proposed for reinforcement learning (RL) with rich observations. For real-world applications of RL, recovering underlying latent states is crucial, particularly when sensory inputs contain irrelevant and exogenous information. In this work, we study how information bottlenecks can be used to construct latent states efficiently in the presence of task-irrelevant information. We propose architectures that utilize variational and discrete information bottlenecks, coined as RepDIB, to learn structured factorized representations. Exploiting the expressiveness bought by factorized representations, we introduce a simple, yet effective, bottleneck that can be integrated with any existing self-supervised objective for RL. We demonstrate this across several online and offline RL benchmarks, along with a real robot arm task, where we find that compressed representations with RepDIB can lead to strong performance improvements, as the learned bottlenecks help predict only the relevant state while ignoring irrelevant information.
translated by 谷歌翻译